Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex
نویسندگان
چکیده
Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying gliotransmission remain uncertain with exocytosis being the most intriguing and debated pathway. We demonstrate that astroglial α1-adrenoreceptors are very sensitive to noradrenaline (NA) and make a significant contribution to intracellular Ca(2+)-signaling in layer 2/3 neocortical astrocytes. We also show that astroglial α1-adrenoreceptors are prone to desensitization upon prolonged exposure to NA. We show that within neocortical slices, α-1adrenoreceptors can activate vesicular release of ATP and D-serine from cortical astrocytes which initiate a burst of ATP receptor-mediated currents in adjacent pyramidal neurons. These purinergic currents can be inhibited by intracellular perfusion of astrocytes with Tetanus Toxin light chain, verifying their origin via astroglial exocytosis. We show that α1 adrenoreceptor-activated release of gliotransmitters is important for the induction of synaptic plasticity in the neocortex:long-term potentiation (LTP) of neocortical excitatory synaptic potentials can be abolished by the selective α1-adrenoreceptor antagonist terazosin. We show that weak sub-threshold theta-burst stimulation (TBS) can induce LTP when astrocytes are additionally activated by 1 μM NA. This facilitation is dependent on the activation of neuronal ATP receptors and is abolished in neocortical slices from dn-SNARE mice which have impaired glial exocytosis. Importantly, facilitation of LTP by NA can be significantly reduced by perfusion of individual astrocytes with Tetanus Toxin. Our results strongly support the physiological importance of astroglial adrenergic signaling and exocytosis of gliotransmitters for modulation of synaptic transmission and plasticity.
منابع مشابه
Effects of visual deprivation on synaptic plasticity of visual cortex
TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...
متن کاملAstroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route
Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by th...
متن کاملEditorial: The role of glia in plasticity and behavior
Citation: Hoogland TM and Parpura V (2015) Editorial: The role of glia in plasticity and behavior. New genetic tools have not only advanced our understanding of how neurons contribute to plasticity and behavior, but also unveiled glial cells as active participants in circuit function as highlighted in this Research Topic. Glia are found in the majority of animals with a nervous system and are e...
متن کاملEffects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کامل